您现在的位置是: 首页 > 热门专业 热门专业
20年江苏高考数学答案,20年江苏高考数学卷
tamoadmin 2024-05-15 人已围观
简介1.2011年数学高考试卷中,江苏省第二十题第二问答案中有n>=8,为什么要以8为界线呢?还有安徽省卷的第十八题江苏高考数学满分是160分。江苏高考总分为480分,其中语文科目满分160分;英语科目满分120分;语文、数学分别另设附加题40分。江苏省普通高考模式为“3+学业水平测试+综合素质评价”。统考科目为语文、数学、外语三门。各科分值设定为:语文160分,数学160分,外语120分,共440分
1.2011年数学高考试卷中,江苏省第二十题第二问答案中有n>=8,为什么要以8为界线呢?还有安徽省卷的第十八题
江苏高考数学满分是160分。江苏高考总分为480分,其中语文科目满分160分;英语科目满分120分;语文、数学分别另设附加题40分。
江苏省普通高考模式为“3+学业水平测试+综合素质评价”。
统考科目为语文、数学、外语三门。各科分值设定为:语文160分,数学160分,外语120分,共440分。语文、数学分别另设附加题40分。
文科类考生加试语文附加题;理科类考生加试数学附加题;不兼报文科类或理科类专业的体育类、艺术类考生不加试附加题。文科类、理科类考生三门统考总分为480分,体育类、艺术类考生三门统考总分为440分。
选修科目情况等级标准介绍
学业水平测试必修科目考试含物理,化学,生物,政治,历史,地理,信息技术7科,各科原始满分为100分,考生需参加未选为学业水平测试选修科目的5门必修科目,其中信息技术只能作为学业水平测试必修科目,学业水平测试必修科目按原始得分实行等级计分。
文科考生必考历史,理科考生必考物理,再从化学,生物,政治,地理中任选一门,学业水平测试选修科目按原始得分排名实行等级计分,分为6个:A+ 、A ( 5%-20% ]、B+ ( 20-30% ]、B ( 30%-50% ]、C ( 50%-90% ]、D ( 90%-100%]。
2011年数学高考试卷中,江苏省第二十题第二问答案中有n>=8,为什么要以8为界线呢?还有安徽省卷的第十八题
既然有人给你解答了,我就讲一下思路。
第1问就不写了。
第2问道理差不多,首先要相信只有等差数列才能同时满足那两个条件,在这个前提下大胆猜测结论,然后就是证明。高考难度通常比较低,中学生知识又少,要相信结论只能是很简单的。
先把条件用一遍
n>3时(S_{n+3}-S_{n})+(S_{n}-S_{n-3})=2S_3,即
a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}=2S_3 (*)
把n用n+1代之后和这个式子减一下得到
a_{n+4}-2a_{n+1}+a_{n-2}=0,即a_{n+4}-a_{n+1}=a_{n+1}-a_{n-2}
这样就得到了第一类的三组间隔为3的等差子列A_1={a_2,a_5,...}, A_2={a_3,a_6,...}, A_3={a_4,a_7,...}
同理把k=4的条件
a_{n+4}+a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}-a_{n-3}=2S_4 (**)
用一遍可以得到第二类的四组间隔为4的等差子列B_1={a_2,a_6,...}, B_2={a_3,a_7,...}, B_3={a_4,a_8,...}, B_4={a_5,a_9,...}
并且注意除a_1外{a_n}的任何一项必同时属于某个A_u和某个B_v。
下一步证明每一类内部的几个等差数列的公差是一样的,因为3和4互质,做到这里应该已经可以相信结论一定是对的。
用(**)-(*)得到a_{n+4}-a_{n-3}=2a_4,也就是说又得到一类间隔为7的等差子列。假定A_u的公差为d_u,那么对于任何a_n属于A_u,利用7d_u=a_{n+21}-a_{n}=6a_4,所以d_u=6/7*a_4,即第一类的三组序列的公差相同,简记为d。同理考察a_{n+28}-a_{n}得第二类的四组序列公差也相同,简记为D,其大小为D=2a_4。
(如果没有想到(**)-(*)这步,那么可以考察a_{n+12}-a_{n},注意a_{n}可以取遍所有的A_u和B_v,可以得到d_u和D_v和u,v无关,只不过无法直接得到d,D及a_4的关系)
下一步目标就很明确了,证明整个{a_n}(第一项除外)就是等差数列,同样是从两类序列的公共点着手,取几个特殊点解方程即可。
利用
a_8 = a_2+2d = a_4+D
a_10 = a_2+2D = a_4+2d
解出d/3=D/4,再代入 a_{n+4} = a_{n}+D = a_{n+1}+d 即得从a_2开始{a_n}是等差数列且公差为D-d。
最后结合前面的d=6/7*a_4, D=2a_4即得D=8,d=6,a_4=7,从而得到a_n=2n-1,这恰好对第1项也成立。
(如果前面没想到(**)-(*)那步的话就把(*)变形成3d=2S_3,把(**)变成4D=2S_4,也可以解出同样的结论。总之最后一步纯粹是解线性方程组,已经不用动脑子了,大不了多取几个点)
原题:设M为部分正整数组成的集合,数列{an}的首项a1 = 1,前n项和为Sn,已知对任意整数k属于M,当n>k时,S(n+k)+S(n-k)=2(Sn+Sk)都成立。
设M ={3,4},求数列{an}的通项公式.
网上节选的答案:当k∈ M ={3,4}且n>k时,Sn+k + Sn -k = 2Sn + 2Sk且Sn+1+k + Sn +1-k = 2Sn+1 + 2Sk,,两式相减得an+1+k + an +1 -k = 2an+1,即an+1+k - an+1 = an+1 - an +1 -k .所以当n≥8时,an - 6, an - 3, an, a n+ 3, an+ 6成等差数列,且an - 6, an - 2, an + 2, an + 6也成等差数列.
为何要以8为界线呢?主要是想使得n分别取3和4时成的等差数列有共同的等差项数,不然不直接令K=3,或者K=4呢,干嘛要这样烦呢?正好,当n≥8时,有了共同的项数a(n+6)
先把a(n+1+k) - a(n+1) = a(n+1) - a(n +1 -k)转化为a(n+1+k) +a(n +1 -k)=2a(n+1).
因为k∈ M ={3,4},所以当k=3时,即当n>k=3时,a(n+4)+a(n-2)=2a(n+1)
当n>4时,a(n+3)+a(n-3)=2an,当n>5时,a(n+2)+a(n-4)=2a(n-1),当n>6时,a(n+1)+a(n-5)=2a(n-2),,当n>7时,an+a(n-6)=2a(n-3),当n>7时,则an,a(n-3),a(n-6)成等差数列。推出:即n≥8时,a(n+6),a(n+3),an,a(n-3),a(n-6)成等差数列.
所以又当k=4时,即当n>k=4时,a(n+5)+a(n-3)=2a(n+1),当n>5时,a(n+4)+a(n-4)=2an,
当n>6时,a(n+3)+a(n-5)=2a(n-1),当n>7时a(n+2)+a(n-6)=2a(n-2),当n>7时,则a(n+2),a(n-2),a(n-6)成等差数列.又推出:即n≥8时,a(n+6),a(n+2),a(n-2),a(n-6)成等差数列.
……后面n≥8时,a(n+2)-an=an-a(n-2),当n≥9时,a(n+1)-a(n-1)=a(n-1)-a(n-3),即a(n+1)+a(n-3)=2a(n-1),即n≥9时,a(n+3),a(n+1),a(n-1),a(n-3)成等差数列.
这个方法不好,有点像在拼凑,网上还有另外一种解法,如下:
Sn + 3 + Sn -3 = 2(Sn+ S3), Sn + 4+ Sn -2 = 2(Sn + 1+ S3)an + 4 + an -2 = 2an + 1(n≥4)
数列{a3n -1}、{a3n}、{a3n + 1}(n≥1)都是等差数列
Sn- a1为三个等差数列前若干项之和的和Sn = an2 + bn + c(a、b、c为常数);
S1 = a1, Sn + 3 + Sn - 3 =2(Sn+ S3), Sn + 4 + Sn - 4=2(Sn+ S4) a + b + c = 1, 3b + c = 0, 4b + c = 0,a = 1, b = c = 0Sn = n2 an = Sn - Sn - 1(S0 = 0)= n2 -(n -1)2 = 2n -1.