您现在的位置是: 首页 > 志愿填报 志愿填报

高考关于数列_数学高考数列

tamoadmin 2024-06-01 人已围观

简介1.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.Xn=PXn-1-QXn-2 Xn-PXn-1+QXn-2=0 --------------(1)将其化成下面格式(待定系数法):Xn-A*Xn-1=B(Xn-1-AXn-2) ------------(2)将(2)式展开,然后与(1)式的各项比较得:A+B=P --

1.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.

高考关于数列_数学高考数列

Xn=PXn-1-QXn-2

Xn-PXn-1+QXn-2=0 --------------(1)

将其化成下面格式(待定系数法):

Xn-A*Xn-1=B(Xn-1-AXn-2) ------------(2)

将(2)式展开,然后与(1)式的各项比较得:

A+B=P -------------(3)

A*B=Q -------------(4)

因此A,B为X^2-PX+Q=0的两根.不防设A=α,B=β

Xn-α*Xn-1=β(Xn-1-αXn-2) ----------------(5)

依(5)的递推式(分别代入n-1,n-2,n-3,...,4,3得:

Xn-1-α*Xn-2=β(Xn-2-αXn-3)-----------------(5.1)

Xn-2-α*Xn-3=β(Xn-3-αXn-4)-----------------(5.2)

Xn-3-α*Xn-4=β(Xn-4-αXn-5)-----------------(5.3)

......

X4-α*X3=β(X3-αX2)-----------------(5.n-4)

X3-α*X2=β(X2-αX1)-----------------(5.n-3)

(5)*(5.1)*(5.2)*(5.3)*...*(5.n-4)*(5.n-3)并消掉相同项:

Xn-α*Xn-1=(X2-αX1)*β^(n-2)

Xn=(X2-αX1)*β^(n-2) + α*Xn-1

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + α^2*Xn-2

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2 + α^2*Xn-2

... ...

=(X2-αX1)*β^(n-2) + (X2-αX1)*β^(n-3)*α + (X2-αX1)*β^(n-4)*α^2+...+(X2-αX1)*β^(n-m)*α^(m-2)+...+(X2-αX1)*α^(n-2) + α^(n-1)*X1

等比数列求和(公比为:α/β) + α^(n-1)*X1

过程比较复杂,建议你参考:

斐波那挈数列通项公式的推导:

斐波那契数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}√5表示根号5

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.

(1)依题意得:a(n+1)=2Sn+1,那么an=2S(n-1)+1

两式相减得:a(n+1)-an=2[Sn-S(n-1)]=2an,那么a(n+1)=3an

要使数列{an}成等比数列,那么此数列的公比只能为3

当n=1时,a2=2S1+1=2a1+1=2t+1,而a1=t

所以a2=3a1=3t=2t+1,所以t=1

(2)a1=t=1,所以数列{an}是以1为等比数列、3为公比的等比数列

那么a(n+1)=1*3^n=3^n

所以bn=log3[a(n+1)]=n

那么1/[bn*b(n+1)]=1/[n(n+1)]=1/n-1/(n+1)

所以Tn=1-1/2+1/2-1/3+…+1/n-1/(n+1)

=1-1/(n+1)

=n/(n+1)

所以T2011=2011/2012

证明:两边同时加n得:An+n=2A(n-1)-2+2n

即An+n=2A(n-1)+2(n-1)

所以得(An+n)/[A(n-1)+(n-1)]=2

所以{An+n}是以2为首项,2为公比的等比数列

(1)an+n=2的n次幂

an=2的n次幂-n

(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)

=2(2的n次-1)-1/2·n(1+n)

文章标签: # Xn # X2 # X1