您现在的位置是: 首页 > 招生信息 招生信息
高考文科数学卷二_文科数学高考答案2卷
tamoadmin 2024-05-15 人已围观
简介1.2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)2009年浙江高考文科数学试题和答案一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设 , , ,则 ( ) A. B. C. D. 1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程
1.2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)
2009年浙江高考文科数学试题和答案
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设 , , ,则 ( )
A. B. C. D.
1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.
解析 对于 ,因此 .
2.“ ”是“ ”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.
解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.
3.设 ( 是虚数单位),则 ( )
A. B. C. D.
3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.
解析对于
4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.
解析对于A、B、D均可能出现 ,而对于C是正确的.
5.已知向量 , .若向量 满足 , ,则 ( )
A. B. C. D.
5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.
解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有
6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )
A. B. C. D.
6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.
解析对于椭圆,因为 ,则
7.某程序框图如图所示,该程序运行后输出的 的值是( )
A. B.
C. D.
7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.
解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .
8.若函数 ,则下列结论正确的是( )
A. , 在 上是增函数
B. , 在 上是减函数
C. , 是偶函数
D. , 是奇函数
8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.
解析对于 时有 是一个偶函数
9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )
A. B. C. D.
9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动
解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.
10.已知 是实数,则函数 的图象不可能是( )
10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.
解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .
非选择题部分(共100分)
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共7小题,每小题4分,共28分。
11.设等比数列 的公比 ,前 项和为 ,则 .
11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.
解析对于
12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .
12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.
解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18
13.若实数 满足不等式组 则 的最小值是 .
13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求
解析通过画出其线性规划,可知直线 过点 时,
14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .
14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力
解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30
15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表 低谷时间段用电价格表
高峰月用电量
(单位:千瓦时) 高峰电价
(单位:元/千瓦时) 低谷月用电量
(单位:千瓦时) 低谷电价
(单位:元/千瓦时)
50及以下的部分 0.568 50及以下的部分 0.288
超过50至200的部分 0.598 超过50至200的部分 0.318
超过200的部分 0.668 超过200的部分 0.388
若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,
则按这种计费方式该家庭本月应付的电费为 元(用数字作答).
15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用
解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为
16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.
16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力
解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.
17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .
从这 张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到
标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,
则 .
17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平
解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本事件有20种,因此
三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,
. (I)求 的面积; (II)若 ,求 的值.
18.解析:(Ⅰ)
又 , ,而 ,所以 ,所以 的面积为:
(Ⅱ)由(Ⅰ)知 ,而 ,所以
所以
19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.
19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD
(Ⅱ)在 中, ,所以
而DC 平面ABC, ,所以 平面ABC
而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
在 中, ,
所以
20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.
(I) 求 及 ;
(II)若对于任意的 , , , 成等比数列,求 的值.
20、解析:(Ⅰ)当 ,
( )
经验, ( )式成立,
(Ⅱ) 成等比数列, ,
即 ,整理得: ,
对任意的 成立,
21.(本题满分15分)已知函数 .
(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;
(II)若函数 在区间 上不单调,求 的取值范围.
解析:(Ⅰ)由题意得
又 ,解得 , 或
(Ⅱ)函数 在区间 不单调,等价于
导函数 在 既能取到大于0的实数,又能取到小于0的实数
即函数 在 上存在零点,根据零点存在定理,有
, 即:
整理得: ,解得
22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .
(I)求 与 的值;
(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.
22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义
点 到焦点的距离等于它到准线的距离,即 ,解得
抛物线方程为: ,将 代入抛物线方程,解得
(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。
则 ,当 则 。
联立方程 ,整理得:
即: ,解得 或
,而 , 直线 斜率为
,联立方程
整理得: ,即:
,解得: ,或
,
而抛物线在点N处切线斜率:
MN是抛物线的切线, , 整理得
,解得 (舍去),或 ,
2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)
1--5 : B D C A B
6-10: B DC DA
11、-6
12、 18
13、 27
14、—8
15、 x>=0
详细答案和解析
注明:部分字符和没有显示
1.若,则复数=( )
A. B. C. D.
答案:B
解析:
2.若全集,则集合等于( )
A. B. C. D.
答案:D
解析:
,,,
若,则的定义域为( )
A. B. C. D.
答案:C
解析:
4.曲线在点A(0,1)处的切线斜率为( )
A.1 B.2 C. D.
答案:A
解析:
5.设{}为等差数列,公差d = -2,为其前n项和.若,则=( )
A.18 B.20 C.22 D.24
答案:B
解析:
6.观察下列各式:则,…,则的末两位数字为( )
A.01 B.43 C.07 D.49
答案:B
解析:
7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )
A. B.
C. D.
答案:D
解析:计算可以得知,中位数为5.5,众数为5所以选D
8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x(cm) 174 176 176 176 178
儿子身高y(cm) 175 175 176 177 177
则y对x的线性回归方程为
A.y = x-1 B.y = x+1 C.y = 88+ D.y = 176
答案:C
解析:线性回归方程,,
9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )
答案:D
解析:左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
10.如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在原点O处,一顶点及
中心M在Y轴正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.
今使“凸轮”沿X轴正向滚动前进,在滚动过程中“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为( )
答案:A
解析:根据中心M的位置,可以知道中心并非是出于最低与最高中间的位置,而是稍微偏上,随着转动,M的位置会先变高,当C到底时,M最高,排除CD选项,而对于最高点,当M最高时,最高点的高度应该与旋转开始前相同,因此排除B ,选A。
二.填空题:本大题共5小题,每小题5分,共25分.
11.已知两个单位向量,的夹角为,若向量,,则=___.
答案:-6.
解析:要求*,只需将题目已知条件带入,得:
*=(-2)*(3+4)=
其中=1,==1*1*=,,
带入,原式=3*1—2*—8*1=—6
(PS: 这道题是道基础题,在我们做过的高考题中2007年广东文科的第四题,以及寒假题海班文科讲义73页的第十题,几乎是原题。考查的就是向量的基本运算。送分题(*^__^*) )
若双曲线的离心率e=2,则m=____.
答案:48.
解析:根据双曲线方程:知,
,并在双曲线中有:,
离心率e==2=,
m=48
(PS: 这道题虽然考的是解析几何,大家印象中的解几题感觉都很难,但此题是个非常轻松的得分题。你只需知道解几的一些基本定义,并且计算也不复杂。在2008年安徽文科的第14题以及2009福建文科的第4题都见过。所谓认真听课,勤做笔记,有的就是这个效果!)
13.下图是某算法的程序框图,则程序运行后输出的结果是____.
答案:27.
解析:由框图的顺序,s=0,n=1,s=(s+n)n=(0+1)*1=1,n=n+1=2,依次循环
S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次
s=(6+3)*3=27,n=4,此刻输出,s=27.
(PS: 程序框图的题一直是大家的青睐,就是一个循环计算的过程。2010天津文科卷的第3题,考题与此类似)
已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.
答案:—8.
解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角。=
(PS:大家可以看到,步骤越来越少,不就意味着题也越来越简单吗?并且此题在我们春季班教材3第10页的第5题,出现了一模一样。怎么能说高考题是难题偏题。)
15.对于,不等式的解集为_______
答案: . x>=0
解析:两种方法,
方法一:分三段,
当x<-10时, -x-10+x-2,
当 时, x+10-x+2,
当x>2时, x+10-x+2, x>2
x>=0
方法二:用绝对值的几何意义,可以看成到两点-10和2的距离差大于等于8的所有点的集合,画出数轴线,找到0到-10的距离为10,到2的距离为2,,并当x往右移动,距离差会大于8,所以满足条件的x的范围是. x>=0
(PS: 此题竟出现在填空的最后一道压轴题,不知道神马情况。。。。。更加肯定考试考的都是基础,并且!!在我们除夕班的时候讲过一道一摸一样,只是换了数字而已的题型,在除夕教材第10页的15题。。太强悍啦!!几乎每道都是咱上课讲过的题目~~所以,亲爱的童鞋们,现在的你上课还在聊Q, 睡觉流口水吗)
想必很多同学高考结束后的第一件事情就是预估自己的分数,而要预估分数就需要答案,我就在本文为大家带来2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)。
一、2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)
2021年高考即将开始,关于2021年高考全国一卷、二卷、三卷数学试题及答案,高考100网将在试题及答案正式公布以后,第一时间进行更新,请大家持续关注高考100网。?
二、志愿填报参考文章
2021年河北450分理科能上什么大学?附河北450分的公办二本名单
女生学医,学什么专业比较好:医学方面女生学什么专业最好?(2021年参考)
学大数据专业后悔死了?大数据专业有哪些学校?
三、2020年全国一卷数学试卷及答案解析
文科
文科参考答案
理科
理科参考答案
四、2020年全国二卷数学试卷及答案解析
文科
文科参考答案
理科
理科参考答案
五、2020年全国三卷数学试卷及答案解析
文科
文科参考答案
理科
理科参考答案